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Continuous orthonormalization describes an initial value method for linear 2.point boun- 
dary value problems which provides an orthogonal basis for the solution space at all points of 
the interval. In this paper the equations of continuous orthonormalization are derived with 
elementary projection arguments to provide geometric insight and motivate some 
modifications of an earlier algorithm. The method is then applied to some oscillatory and stiff 
boundary value problems to demonstrate that it is simple to use, problrm independent, and as 
adaptive as the initial value code which is used to integrate the equations of continuous 
orthonormalization. ‘CJ 1986 Arademir Press. Inc 

1. INTRODUCTION 

A continuous orthonormalization method for I-point boundary value problems 
was described by Bakhvalov [I], suggested by Drury [Z] for the Orr-Sommerfeld 
equation, and finally implemented and tested in this setting by Davey [3]. The 
method shows impressive results when applied to such notoriously stiff boundary 
value problems as the Orr-Sommerfeld eigenvalue problem for plane Poiseuille 
flow at Reynolds numbers up to 109. The results are all the more impressive 
because a simple fixed-step Runge-Kutta integrator was used in [3] to solve the 
nonlinear initial value problems on which the new method is based. 

Tt is Lhe purpose of this paper to demonstrate that the conlinuous orthonor- 
malization method is a robust solution method for stiff as well as oscillatory linear 
boundary value problems. It is easy to apply, requires no decision about orthonor- 
malization points, uses Lhe full adaptivity built into current initial value codes, and 
has moderate storage requirements. Like invariant imbedding and shooting [4], 
the method is particularly useful for problems with nonlinear or free boundary con- 
ditions and for eigenvalue problems where a representation of the solution on the 
boundary is required before the complete solution can be computed. Unlike 
invariant imbedding and shooting, the continuous orthonormalination method does 
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not have to contend with unbounded or unstable initial value problems and is 
therefore easier to use. These advantages must be balanced against the necessity to 
integrate larger systems of differential equations than those occurring in competing 
initial value methods for boundary value problems. 

It is also the purpose of this paper to provide some geometric insight into the 
method. In particular, we shall give a proof of the key spanning property of the 
computed orthonormal set based on elementary projection arguments similar to 
those of [l] rather than the less familiar wedge product used in [3], explain why 
the hints on implementation given in [3] are essential for success of the method, 
and provide a new algorithm for the reverse integration required by the method. 

The power of continuous orthonormalization is demonstrated by solving three 2- 
point boundary value problems involving boundary layers, rapid oscillations, turn.- 
ing points, and Orr-Sommerfeld eigenvalue calculations. The method proved equal 
to all these problems without special fine-tuning. 

2. CONTINUOUS ORTHONORMALIZATION 

Our aim is to derive the equations of continuous orthonormalization for an inner 
product space to motivate geometrically- the original algorithm and its 
modifications. Consider the linear system 

y’=A(tl2’+I’(tj (2.l) 

where J’E C,,, A(t) is an II x II continuous complex matrix. and r(t) is a continuous 
vector in C,,. The system (2.1) is augmented by separated bolindary conditions of 
the form 

B, Y(O) = “0, gll’t 1 )I = 0 :2.2 5 

where B, is a k x n complex matrix of rank k and g[.r’( 1 )] = 0 represents the 
remaining 11-k boundary conditions. We shall assume that the vector ~1 has been 
ordered such that the first k columns of B, are linearly independent. If 

B, = (B, f&l 

where B, is a nonsingular k x k matrix, and the B x 11 matrix C is defined as 

c= ‘B,’ 
i \ 0 

then for Z( I I = C ‘.r( t ) we obtain the boundary value problem 

z’ = c’.4(t) c:. 

r(O), = ai. r = i)... r k. 

g[CZ(l)]=o. 
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Hence, without loss of generality we shall assume that B, is of the form (IO) where 
1 is the k x k identity. If both boundary conditions are linear, then the end point 
should be chosen as the starting point for the orthonormalization method for which 
k is larger since initial value problems for n(n - k) equations will have to be 
integrated. 

As is common in the method of superposition, the solution of (2.1, 2) may be 
expressed as 

j(t) = jt,(t j + u(tjc (2.3 j 

where yP is any solution of the initial value problem 

y’=A(t)y+r(t), 

B, y(0) = CI 

and U is an n x (n-k) matrix with linearly independent columns which satisfies 

?T=.ll(t)U, 

B,U(O)=O. 
(2.4) 

The columns of U span a IZ - k - p-dimensional subspace s(tj of C,. The unknown 
vector c is determined by substituting the representation (2.3) into g[v( l)] = 0 and 
solving for c (if possible). 

In nonstiff boundary value problems, linearly independent initial conditions for 
U(t) retain numerical linear independence on integration which, as a rule, helps in 
determining c. In stiff boundary value problems, even orthogonal initial conditions 
can lose numerical linear independence so that g[j*( 1 )] = 0 may become ill-con- 
ditioned or unsolvable. The discrete orthonormalization method is designed to 
provide almost orthogonal columns for U by periodically redefining initial con- 
ditions for U through a Gram-Schmidt process (see, e.g., [S]). The continuous 
method, on the other hand, maintains orthogonality at all times. This method may 
be motivated as follows: 

On the complex vector space C,, a convenient inner product denoted by ( , ) is 
imposed. (In the sample calculations the standard I2 inner product is used: however, 
the structure of (2.1) or the boundary conditions may dictate a better choice.) 

Let (ui(0)> denote p orthonormal initial conditions for the homogeneous 
problem (2.4) with respect to this inner product. Then the solution (uj(tj) remains 
linearly independent and spans the solution space S(t) of (2.4). 

Let (vi(t)} be p orthonormal vectors which also span s(t) and which coincide 
with {u,(O)) at t = 0. Then u,(t) can be written as 

Ui(t)= f (Ilj(t), J)(t)> Yj(tk 

j=l 

(2.5) 
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Since the ?vi are assumed to be orthonormal, we require that 

(I’i, .i;)=ii, and (j,,, j;>‘=O: 

Each ui satisfies (2.4) which may be expanded as 

u: = i (ul;) y.j + (Uj, 1;‘) j’j + (Uf, yj> j; = -f (Uj, y,) Ay;. 
j=i J=I 

Substitution of (2.5) for ui leads to 

f (u;, yJy;= i (q, 1;) AJvi- f (u,, .lj> i(: (Ayj. J'k >).& 

j=l j=l j= 1 k=l 

e/g1 C”it l’.j> 5 (Y,Y Yk>.I’k. 
k=l 

As s(t) changes with t, it is possible to update it continuously rather than recom- 
pute it completely [3]; i.e., 

s(t+dt)=S(t)OLlS(Lltj; 

dS(dt) denotes the orthogonal complement of S(r) in S(t+dt) so that s(t)i,ds. 
Then any vector .ri( t + dt) in s(t + At) can be decomposed as 

yi(t + drj = yi(t) + dyi 

where d~.‘~lS(t). Differentiability of yi( t) now implies that 

(y;(t), y,(t)) =o l<i,.j<p. (2.6 ) 

If we impose condition (2.6) rather than (J’,, )si )’ = 0, then the above equation is 
satisfied if the yj are chosen such that 

with 

J)(O) = q(O) 

gjk = - (A4), ?ik ). 

Alternatively, we can make the Ansatz (2.7) and compute g-jk such that ( 
which leads to the linear system 
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for the unknown gik. The Eqs. (2.7), (2.9) describe the continuous orthonor- 
malization method. We note that if the I, inner product is chosen then the Eqs. 
(2.7)-(2.9) can be rewritten compactly in matrix form as 

1” = (I- YY+ ) A 1 

where Yf denotes the generalized inverse (Y*Y)-‘Y* and Y* the conjugate trans- 
pose of the complex y1 x p matrix Y. 

We summarize and make precise the above heuristic derivation in the following 
key theorem which was proved in [3] with wedge products. 

THEOREM 1. Let fui(t)> be p linearll~ independent solutions of (2.4) which are 
initially orthonormal. Then the nonlinear pn-dimensional complex system 

y; = ClJ, + i g,yj i = I,..., p, 
j=l 

Yj(O) = u,(O) 

with {gij} computed from (2.9) has a unique solution ( yi( t) 
orthonormal and 

span(y,(t)) = span(ui(t)>. 

(2.10) 

>pzl. The set (yi(t)) is 

ProoJ The pn-dimensional system (2.10) has a polynomial right side and hence 
has a unique local solution. Moreover, it follows from the defining relations for gij 
that (y;, yj ) = 0 for all i and j so that ( yi, yj )’ = 0. Hence the set (y,(t)} remains 
orthonormal and exists globally. Consider now the residual 

ri = 21i - $J (IliT J> > 1;. 
j=l 

Differentiation shows that 

r:=ui-j$l (Ul9 Yj).Yj- 5 C”i9 Yi)l>- f C”i, Yj)Yi. 
j= 1 j=l 

We note from the definition of ri and the orthonormal property of {yj} that 

(u;, E;I > = (ri, Yi > 

and 

CAui, Yj > = CAri, 1; > + f (Ui, Yk > <AYk, Yi >. 
k=l 
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Substitution into the expression for Ye leads to 

r:=Ari- f ((Ari,yj)-(ri, Jj)]]', 

j=l 

Since (Ay,, yj) = -gkj, the last two sums cancel. Thus 

r:=‘4rj-- i C(Ar,,1;)-c~~.I;r))?,~~ 
j=l 

r,(.O) = 0. 

This linear homogeneous differential equation in the components of ri has only the 
zero solution so that fli E span{ yj} for i = l,..., p. 

In solving the Orr-Sommerfeld eigenvalue problem, Davey [3] found that “-the 
temptation of substituting - (.4 yj, y, ) for gik is to be sorely resisted” because the 
algorithm proved unstable. Instead, gjk is to be computed from the system (2.9) 
without imposing a priori any orthogonality. This instability is, in fact, 
mathematical rather than numerical, because not every orthonormal solution to 
(2.7), (2.8) is asymptotically stable. For ease of argument, let A be a constant I-Ier- 
mitian matrix, and (j, }kp= i be an orthonormal set of eigenvectors with associated 
eigenvalues {J+>. Then the unique solution of (2.7),(2.8) with initial condition 
y,(O) = ji can be written as yj(t) = di( t) ji, where 

Clearly, 4Jtj = 1 is the unique solution of (2.1 l), but it is not always asymptotically 
stable. For example, if Lj < 0 and 4,(O) < 1 then lim, _ ~ di( t) = 0, while for ai > I, 
lim ~ _ 5c di(t) = W. If 2; > 0 then di(t) 3 1 is asymptotically stable. 

If g, is computed from (2.9) then 

j=l 

yields g, = - l$jii. The equation corresponding to (2.11) is now 

& = n&b, - ajqbj E 0, 

4i(O) = 1 

whose solution is asymptotically stable. A general stability theorem for (2,7), (2.9) 
follows from the observation that Y*(t) Y(t) = Y*(O) Y(0) provided only that 
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Y*(O) Y(0) is invertible [l]. In particular since Y*(O) Y(0) = I it follows that 
Y*(t) Y(t) numerically will remain close to the identity matrix at all times. Hence a 
reasonable simplification of the method can be based on the splitting Y*Y = 
D(I- B) and the approximation 

(y*y)-‘= 

where DB contains all off-diagonal elements of Y* Y. Numerical results indicate that 
m = 0 already provides a stable method. 

Let us next consider the calculation of the particular integral )1,(t). Again for 
computational stability, it is advantageous to find a particular integral which is 
orthogonal to the subspace span{ l>;(t) ). Let uP( t) be any particular integral of (2.1) 
which also satisfies the boundary condition 

In view of Theorem 1 we can write 

J’pCt)= i <Yptf)3 J’itt)> YiCtJ+zp(t) (2.12) 
i=l 

where zP( t) belongs to the orthogonal complement of span{ yi( t) >. Differentiation 
shows that 

@)=J’;(+ f ((4’b,~i)~i+(J’p,?‘~)J’j+(I?pr?ir)J’~}. 
i= 1 

If the differential equations are substituted for 1-b and J$ and ~1~ is replaced with the 
expression (2.12), then it follows immediately that 

-,I 
LP = .4z, + Y + f gp; J’j (2.13) 

i= 1 

B,z,(O j = c(~ 

where {g,,} are computed by using orthogonality and the defining relations (2.8) 
and (2.12 j. Alternatively, we can use the representation (2.13) and the requirement 
that (z,, yj)’ = 0. We find the linear system 

(A=,, J’k > + (r, ?!k > + i gpj(Yj, J’k > 

j= 1 

k = l,..., p. 
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The relation for g,, suggested in [3] requires only that (zb, y, ) = 0 which does not 
assure orthogonality of zP to span{)>,) but does provide a minimum norm par- 
ticular solution [l]. We note again that for the I, inner prodluct Eq. (2.13’) can be 
written in matrix form as 

z;=(I-YY+)(AZp+J--Y(Y*Y)-I E”“2. 

Let us summarize the algorithm. For the inhomogeneous boundary value 
problem (2.1). (2.2) we integrate simultaneously the nonlinear n(p + 1 )-dimensional 
system 

.I,; =.41:, + f gil;yk, (2.14) 
k=l 

where {J:;(O) 1 is an orthonormal set satisfying 

B, Fi(0) = 0, j= 1 ,...* p: 

and z,(O) is any vector in the orthonormal complement of span{+ri(0)j which 
satisfies &z,(O) = 3~~. Then by Theorem 1 the solution of (2.1), (2.2) at any point 
t E [0, I] can be expressed as 

The integration of (2.14) is referred to as the forward sweep. The complete solution 
.I>( t) is found during the reverse sweep to be discussed next. 

As before we assume that the boundary condition 

has at least one solution {iI( 1)). This solution determines an initial condition for 
the solution .I’ of (2.1), (2.2) at t = 1. However, for stiff problems it is not advisable 
to integrate an initial value problem for (2.1) over the whole interval. Instead. it is 
suggested in [3] to solve the differential equation satisfied by {Ai( which on dif- 
ferentiation is obtained as 

with ii( 1) determined from (2.16 ). 
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The coefficients g, depend on the orthonormal set {yi(t)). To avoid storage and 
interpolation, Davey [3] suggests simultaneous integration of (2.7), (2.9), and 
(2.17) with periodic adjustment of the initial conditions for (2.7) with the results 
from the forward sweep to improve stability. The calculation of the Orr-Sommer- 
feld eigenfunction for a Reynolds number of R = 10’ proves the soundness of this 
approach. 

A somewhat different method is suggested here; it requires only the integration of 
the n original differential equations (2.1) rather than the (IZ + 1)~ equations (2.7), 
(2.17). Moreover, no interpolation is necessary, but the demand on storage 
increases. 

We save the orthogonal set {all, zp(t)} during the forward sweep at an a priori 
chosen number of mesh points { tk)fco with f,, = 0 and t, = 1. Let uk denote the 
solution of (2.1.) over the interval [tk ~, , tk]. It is obtained over successive subinter- 
vals from 

v;(tj=.4(tp, +r(t), tE [t,-,, tkl, 

Uk(flij = f (Ok+ ,(tkj -Z(tkj, Yitkj) .Ili(tk) + dtkj. 
i= I 

(2.18) 

In other words, the computed solution of the initial value problem is periodically 
projected into the subspace where it is supposed to be. These interior points serve 
the same role as the interior points during multiple shooting. but unlike in the 
shooting method they do not contribute to the complexity of the algorithm since 
only the simple projection (2.18) is required. The examples of the following section 
illustrate the efficiency and stability of the method. 

3. NUMERICAL EXAMPLES 

In the following sample problems all ordinary differential equations have been 
integrated with the IMSL Runge-Kutta routine DVERK with a default error 
tolerance of 10P6. Unless otherwise noted, the projection points { t,),^‘_, are evenly 
distributed over the interval of integration. 

EXAMPLE 1. The simple 2-point boundary value problem 

u” + yu = 10 000 cos 80t, (3.1) 

24(0 j = ax, u(l)=b 

is chosen to examine the behavior of the method for large 1 y 1. Continuous 
orthonormalization is applied to the equivalent first-order system 



CONTINUOUS ORTHONORMALIZATION 259 

The solution L’ is expressed as 

where 

y’(t) = Ag + g,, ,I’, 

, g,, = - (Ay, .Y>;:(Y, ,v> 

and 

z;( tj = AZ, + F + g,, y, 

~pio,=(;)> $?,I = - [(;4z,, y) + (z,, ‘4 r) + (Y, ,I.> 

+ g11 (=p J’ > 111<3!, )’ >. 

The boundary condition at t = 1 requires that A(l) be determined such that 
[i(ljy(lj+~,(l)]l =p. Then (3.2) is integrated backward subject to 

P ’ 
L’(1)= ‘CA(l) J(lj+z,(l)], t 1 . 

The computed solution is projected at the mesh points according to (2.18) 

Case (1) 5’ = 10 000. The solution to the problem is 

u=cl cos 100r+cz sin lOOt+~~,(t) 

where 

10 000 
I’,(f) =- y - 6400 ‘OS got 

and where c, and c2 are determined from the assumed boundary conditions u( 0) = 1 
and u( 1) - 0. This case is not a difficult problem for superposition since the fun- 
damental solutions remain well behaved over the interval, and y is not near an 
eigenvalue of the differential operator. Continuous orthonormalization also 
reproduces the analytic solutions well. With 100 mesh points the absolute error is 
observed to be less than lob-“. It improves somewhat when the reverse integration 
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FIG. 1. 4 Oscillatory solution of problem (3.1): y = 10 , I IM = 200. observed maximum absolute error: 
0.012; Cyber 176 execution time: 0.77 s. 

is carried out without projection, which is an indication of the stability of the initial 
value problem for (3.1): and also a hint that increasing the number of projection 
points need not always improve the solution. In fact, for M= 1000 the maximum 
error increased to 0.024. A plot of the computed and analytic solution is shown in 
Fig. 1. In highly oscillatory problems the vectors )’ and rp rotate rapidly and are dif- 
ficult to maintain at right angles with DVERK. Nonetheless, continuous orthonor- 
malization solves the problem effectively. 

If the far boundary condition had been given as u(s) = Jls), U’(S) = g(s) at an 
unknown location t = S, then on integrating ~1 and zP and by eliminating n(t) from 
the representation tj( t) = zp( I) + A(t) JI( t), one can evaluate the expression 

Any root s of #(I) = 0 defines a permissible free boundary with corresponding initial 
data 14(s) = f(s), d(.yj = g(s). Thus continuous orthonormalization can be used like 
invariant imbedding for free boundary problems; however, it is easier to apply here 
since the standard invariant imbedding method is based on the Riccati transfor- 
mation u(t) = R(r) u’(t) + u’(f), where R(t) = & tan 1OOt is periodically unbounded. 

Case (2) y = - 10 000. The solution to the problem is 

24=Cle100f+C2e~'00'+?',(t) 

where J>,(t) is the particular integral given above. The boundary conditions are 
again chosen as u(0) = 1, u( 1) = 0. Continuous orthonormalization performs 
reliably. For M= 100 the absolute error is 0( 10P6) at the mesh points which 
decreases to 0( 10P9) for M= 1000. A plot of the computed solution is shown in 
Fig. 2. Reverse integration without projection gives a final value of 
u(0) = 1.121 . 103j. Hence superposition and shooting fail, while the Riccati equation 
in invariant imbedding has the solution R(r) = & tanh 1OOt which changes rapidly 
near 0. Orthonormalization, on the other hand, produces a nearly constant vector 
y(t) in spite of the boundary layer near t = 0. 
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FIG. 2. Boundary layer solution of problem (3.1): ;! = - 1Q4. .ti= 200: observed maximum absolutz 
error: 9.7. lo-‘: Cyber 176 execution time: 0.27 s. 

EXAMPLE 2, The problem 

al” + tu’ = -E$ cosi7u) - (70) sin(7rrt ), (3.3j 

u(-1)= -2, u(l)=0 

is used in [6] to illustrate the performance of the adaptive collocaticn code 
COLSYS for 2-point bzundary v$ue problems. The solution of the problem is 
u(f) = cos( nt) + erf( I,‘tl2~)/erf( 1 J 2~) which shows a turning point and sharp 
transition layer near t = 0. COLSYS solves this problem for t: = 10mh wrthin an 
absolute error of O( 10d6). Initial value, finite element, and finite difference codes 
are expected to fail for this problem [6]. Continuous orthonormalization as 
implemented in the research code found no diffkulty in rapidly computing the 
representation 

However, the reverse integration with DVERK is stable only if dr = O(c ~“1 near 
i = 1. This reverse integration would be expensive and was not attempted. The 

Y 0 

-I 

-2 
- I.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

FIG. 3. Solution of problem (3.3 ): E = 10 --), M = 2000: observed maximum absolute error: 2.7. i0 ': 
CDC Cyber 276 execution time: 2.7 s. 
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results shown in Fig. 3 hold for E = lo-” and M = 2000. The maximum absolute 
error was 3. lop4 which decreased to 3.10p6 for M= 5000. The same number of 
mesh points uniformly distributed over the transformed interval [yO, y,], where 
JJ = (x + 1)4 allowed the solution of (3.3) for E = lop5 with an accuracy of 4.10 m4. 
However, such a transformation is problem specific and runs counter to the attempt 
to use continuous orthonormalization without special line-tuning. 

It appears to be straightforward to combine the theoretical error bounds for the 
Runge-Kutta method with the measured projection difference at the mesh point to 
give an a posteriori error bound for the method of continuous orthonormalization. 
However, such a bound may be very pessimistic. For example, when a solution of 
(3.3) is attempted with M= 5000 and E = lop5 then the reverse integration 
produces errors of 0(105) on (0,l). Nonetheless, as the integration proceeds the 
answer suddenly jumps to the correct value and maintains an absolute error of 
0(10-6) on ( - LO). Thus, integration and projection errors need not accumulate 
but may in fact cancel if the system has the proper structure. 

A final comment on Example 2. If the boundary condition u( 1) = 0 is replaced by 
a nonlinear condition g(u(l), u’(1)) = 0, then the representation (3.4) reduces to a 
single scalar equation in the unknown A( 1). Thus, continuous orthonormalization 
may be used as a preprocessor for more sophisticated but time consuming codes 
such as COLSYS whenever a nonlinearity is introduced through the boundary data 
only. 

EXAMPLE 3. As a final illustration, let us briefly discuss the Orr-Sommerfeld 
eigenvalue calculation carried out by Davey for plane Poiseuille flow with high 
Reynolds numbers [3]. The problem may be written as 

y’ = A(x) J (3.5) 

where 

i 
0 1 0 0 

A(x) Lx* 

0 1 0 

= 000 1 1’ 
\a 0 h 01 

a = 2icrR, h = CX* + hR( 1 -x2 - c), and (a is the unknown complex eigenvalue. For 
the most unstable flow the boundary conditions 

y(O), = J’(O), = 0 

J’(l), = L’(f)* =o 

apply. Highly accurate eigenvalues for a Reynolds number of R = lo4 have been 
published [7] which serve as a starting point for a continuation in R. 
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The implementation of continuous orthonormalization assembled the eighr‘h- 
order system 

y;=/fy,+ i gijyi, 
.j= I 

y,(l)=P,, y,(.l)=e’, 

in complex form and used DVERK to integrate the real and imaginary parts. A 
solution of the eigenvalue problem results if c is found such that the two equations 

allow a nontrivial solution (A,, AZ). When the determinant of the coefficient matrix 
is denoted by F(c), then the nonlinear complex equation 

F(c)=0 

must be solved. Davey employed Newton’s method whereas here a discrete New- 
ton’s method is used. For a Reynolds number of R = IO6 and a wave number of 
x = 1 our implementation of the eigenvalue iteration and the calculation of the 
eigenfunction by integration of (3.5) with periodic projection at 1000 points exactly 
reproduces the tabulated answer of 131. To give an impression of the severity of his 
problem we have shown in Fig. 4 the imaginary part of J.(x)~ near the boundary 
s = 1. The other components of Y(X) are better behaved. It also was noted that the 

20X 104 

Y -20 

-40 

-60 ^^ 

I I I 

I I I 

FIG. 4. Imaginary part of the component J$x)~ for problem (3.5): Reynolds number: R = 10"; Wave 
number: a = 1. Initial guess for the discrete Newton method: c = 0.066 - i0.013. Convergence in nine 
iterations to c = 0.066592523 - i 0.013983266, M = 2000. Cyber 176 execution time: 120 S. 
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significant digits of the eigenvalue and eigenvector remained unaffected when in the 
linear system (2.9) the off-diagonal terms ( ?J,, ~1~ ) were set to zero as suggested by 
the above stability analysis. No attempt was made here to compute with higher 
Reynolds numbers (see [3] for an eigenvalue and eigenvector calculation for 
R=109). 

All the above examples indicate that continuous orthonormalization merits atten- 
tion as a simple robust solver for n-dimensional first-order linear systems, provided 
the number p of missing boundary conditions at the distinguished end point is suf- 
ficiently small that the resulting n(p + 1 )-dimensional initial value problem can be 
integrated economically. The use of a Runge-Kutta routine for continuous 
orthonormalization appears sensible since the initial value problem for the forward 
sweep is not stiff, while frequent projections efficiently overcome stiffness during the 
reverse sweep. 

For both sweeps inner products need to be computed repeatedly. An effective 
computer code can use basic linear algebra subroutines to assmble the right side of 
(2.7 j and (2.18). Partial vectorization of the code is thus possible without much 
effort. 

Finally, the use of continuous orthonormalization for multipoint problems and 
its incorporation into a Newton iteration for nonlinear boundary value problems 
remain to be studied. 
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